Selective Dimerization and Hydrogenation of Ethylene on Active Zirconium Oxide with Coordinatively Unsaturated Surface Sites

Sang-Chul MOON, Kouji TSUJI, Takaiki NOMURA, and Masakazu ANPO\*

Department of Applied Chemistry, University of Osaka Prefecture,

Gakuen-cho 1-1, Sakai, Osaka 593

The evacuation of the ZrO<sub>2</sub> catalyst at higher temperatures led to the appearance of an abnormal absorption and photoluminescence due to the formation of coordinatively unsaturated surface sites. These active ZrO<sub>2</sub> catalysts having coordinatively unsaturated surface sites exhibited a high catalytic activity for the selective dimerization of C<sub>2</sub>H<sub>4</sub> to 2-C<sub>4</sub>H<sub>8</sub>. In the presence of H<sub>2</sub> and C<sub>2</sub>H<sub>4</sub>, the formation of C<sub>4</sub>H<sub>10</sub> was observed in place of 2-C<sub>4</sub>H<sub>8</sub>. The significant role of the coordinatively unsaturated surface sites in these reactions on the active ZrO<sub>2</sub> catalyst has been clarified in detail for the first time.

The activation of H<sub>2</sub> on the catalyst surface is vital with regard to hydrogenation reactions. Recently, Domen et al.<sup>1)</sup> have reported that ZrO<sub>2</sub> catalysts prepared from ZrO(NO<sub>3</sub>)<sub>2</sub> exhibit a specific activity in the hydrogenation of CO and C<sub>2</sub>H<sub>4</sub>. By applying a dynamic photoluminescence technique to these catalysts, we have observed that coordinatively unsaturated surface sites (CUS) are generated on the active ZrO<sub>2</sub> surface by evacuation at temperatures higher than 673 K, which subsequently play a significant role in the dissociative adsorption of H<sub>2</sub> and CO.<sup>2)</sup> Such CUS were also found to be instrumental in the appearance of abnormal absorption and photoluminescence bands as well as in the dissociative absorption of H<sub>2</sub> and also in catalytic reactions on alkali-earth metal oxides such as MgO and SrO.<sup>3)</sup>

On the other hand, some metal and metal oxide catalysts supported on SiO<sub>2</sub> are known as active catalysts for the dimerization of alkenes.<sup>4,5)</sup> However, in the hydrogenation of alkenes, some pure metal oxide catalysts such as NiO, ZnO, and Al<sub>2</sub>O<sub>3</sub>, etc. are known to exhibit a reactivity for the hydrogenation of C<sub>2</sub>H<sub>4</sub>, but not for dimerization.<sup>6,7)</sup>

In this paper, active ZrO2 catalysts having CUS are discussed along with observations

of the selective dimerization of C<sub>2</sub>H<sub>4</sub> to 2-C<sub>4</sub>H<sub>8</sub> in the presence of C<sub>2</sub>H<sub>4</sub> alone as well as the hydrogenation of C<sub>2</sub>H<sub>4</sub> to C<sub>2</sub>H<sub>6</sub> and C<sub>4</sub>H<sub>10</sub> in the presence of a mixture of C<sub>2</sub>H<sub>4</sub> and H<sub>2</sub> on the active ZrO<sub>2</sub> catalysts at 298 K, respectively.

The ZrO<sub>2</sub> catalysts were prepared by the precipitation of the ZrO(NO<sub>3</sub>)<sub>2</sub> solution with NH<sub>4</sub>OH after which the precipitates were dried and calcined in oxygen at 773 K. Before recording the photoluminescence spectra, the ZrO<sub>2</sub> catalyst was degassed for 9 h at the desired temperature in the region of 300 to 1173 K. The photoluminescence

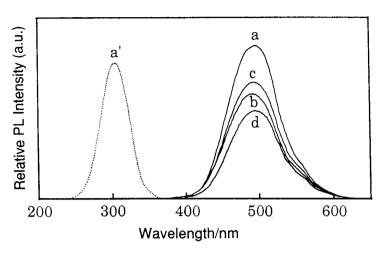



Fig. 1. Photoluminescence spectrum (PL) of the active ZrO<sub>2</sub> catalyst and the effect of the addition of the reaction gases onto the PL spectrum (recorded at 77 K). a: PL spectrum of the active ZrO<sub>2</sub>, b: after the addition of C<sub>2</sub>H<sub>4</sub> (18 Torr), c: after the evacuation of C<sub>2</sub>H<sub>4</sub> (to 10<sup>-6</sup> Torr), d: after the addition of H<sub>2</sub> onto the spectrum (c) (20 Torr).

spectra (PL) of the catalyst were recorded at 77 K with a Shimadzu RF-501 spectrofluorophotometer. Prior to the catalytic reactions, the ZrO<sub>2</sub> catalyst was evacuated at 1073 K for 9 h. The effluent gases were analyzed by gas chromatography.

Figure 1 shows the typical PL (solid line: a) and its excitation spectrum (i. e., absorption spectrum) (dotted line: a') of the ZrO<sub>2</sub> catalyst evacuated at 1173 K. It also shows the effect of the addition of C<sub>2</sub>H<sub>4</sub> on the PL. It has been confirmed that before evacuation at high temperatures, the ZrO<sub>2</sub> catalyst never shows any absorption and PL. The ZrO<sub>2</sub> catalyst exhibits the PL and absorption bands only after treatment at temperatures higher than 600 K in vacuum, their intensities strongly depending on the evacuation temperature and time. These absorption and PL spectra are attributed to the following charge transfer processes on the CUS:

$$(Zr^{4+} - O^{2-})_{LC} = \frac{hv}{hv'} (Zr^{3+} - O^{-})^*_{LC}$$
 (eq. 1) (LC; low coordination)

As shown in Fig. 1, the addition of C<sub>2</sub>H<sub>4</sub> onto the ZrO<sub>2</sub> catalyst leads to the efficient quenching of the PL. After quenching, the evacuation of the system at 298 K leads to only a partial recovery of the original intensity of the PL, i. e., a reversible quenching, while most of the intensity remains unrecovered, i. e., an irreversible quenching of the PL. Thus, both the reversible and irreversible quenchings of the PL were observed with the addition of C<sub>2</sub>H<sub>4</sub>. These findings clearly suggest that the added C<sub>2</sub>H<sub>4</sub> easily interacts with the CUS exhibiting at least two different interactions, one weak and reversible and the other strong and irreversible.

152 Torr

| •                                                 |                                    | _     |                                                                 | _            | • "                                                           | •     |                                                                   |               |
|---------------------------------------------------|------------------------------------|-------|-----------------------------------------------------------------|--------------|---------------------------------------------------------------|-------|-------------------------------------------------------------------|---------------|
| reactants amount of C <sub>2</sub> H <sub>4</sub> | only C <sub>2</sub> H <sub>4</sub> |       | $C_2H_4 + H_2^{a)}$                                             |              | only<br>s-π-C <sub>2</sub> H <sub>4</sub> + H <sub>2</sub> b) |       | $H_2 + C_2 H_4^{\ C)}$                                            |               |
|                                                   | product                            | yield | product                                                         | yield        | product                                                       | yield | product                                                           | yield         |
| 1.82 Torr<br>(6 μmol/ g-cat.)                     | not<br>detected                    |       | C <sub>2</sub> H <sub>6</sub>                                   | 1.96         | C <sub>2</sub> H <sub>6</sub>                                 | 15.6  | C <sub>2</sub> H <sub>6</sub>                                     | 0.14          |
| 92.5 Torr                                         | 2-C <sub>4</sub> H <sub>8</sub>    | 1.26  | C <sub>2</sub> H <sub>6</sub><br>C <sub>4</sub> H <sub>10</sub> | 5.01<br>21.0 | C <sub>4</sub> H <sub>10</sub>                                | 22.0  | 2-C <sub>4</sub> H <sub>8</sub><br>C <sub>4</sub> H <sub>10</sub> | 48.9<br>< 0.1 |
|                                                   |                                    |       | CaHe                                                            | 16.2         |                                                               |       |                                                                   |               |

Table 1. The Yield of the Products in the Reactions of the Dimerization of  $C_2H_4$  and the Hydrogenation of  $C_2H_4$  with  $H_2$  on the Active  $ZrO_2$  Catalyst ( $\mu$ mol/g-cat.)

81.5

C<sub>4</sub>H<sub>10</sub>

30.0

C<sub>4</sub>H<sub>10</sub>

2-C<sub>4</sub>H<sub>8</sub> 20.0

According to a report on the ZrO<sub>2</sub> catalyst by Domen et al.,<sup>8)</sup> there are two types of interactions between ethylene and the ZrO<sub>2</sub> surface: a weak adsorption species identified as  $\pi$ -C<sub>2</sub>H<sub>4</sub> and a strong adsorption species identified as s- $\pi$ -C<sub>2</sub>H<sub>4</sub>. These results on the adsorption of C<sub>2</sub>H<sub>4</sub> on the active ZrO<sub>2</sub> catalyst were found to correspond well with the above findings.

Furthermore, Fig. 1 shows that the addition of H<sub>2</sub> onto the catalyst, on which C<sub>2</sub>H<sub>4</sub> quenched the PL of the ZrO<sub>2</sub>, also leads to additional quenching, suggesting that H<sub>2</sub> interacts with the remaining unsaturated surface sites. In other words, H<sub>2</sub> can adsorb on the sites on which C<sub>2</sub>H<sub>4</sub> does not interact. After quenching by the added H<sub>2</sub>, the system was evacuated. Only a partial recovery of the original intensity of PL took place, suggesting that H<sub>2</sub> adsorbs irreversibly on the active ZrO<sub>2</sub> catalyst.

Table 1 shows the results of isomerization and hydrogenation of C<sub>2</sub>H<sub>4</sub> on the active ZrO<sub>2</sub> catalyst. As shown in Table 1, column 1, no reaction can be observed upon the introduction of C<sub>2</sub>H<sub>4</sub> onto the active ZrO<sub>2</sub> catalyst at pressures lower than 1.82 Torr. In this case, no gaseous C<sub>2</sub>H<sub>4</sub> was found and a total corresponding amount of 6 μmol/g-cat of C<sub>2</sub>H<sub>4</sub> was adsorbed on the catalyst.<sup>9</sup>) However, with the addition of C<sub>2</sub>H<sub>4</sub> in the regions of 92.5 - 152 Torr, the selective formation of 2-C<sub>4</sub>H<sub>8</sub> was observed. (trans/cis ratio = 1.83). As shown in Table 1, column 2, the addition of H<sub>2</sub> onto the ZrO<sub>2</sub> catalyst on which C<sub>2</sub>H<sub>4</sub> was preadsorbed at amounts less than 6 μmol/g-cat, led to the selective formation of C<sub>2</sub>H<sub>6</sub>, while the addition of H<sub>2</sub> on the ZrO<sub>2</sub> catalyst on which C<sub>2</sub>H<sub>4</sub> was introduced at pressures higher than 92.5 Torr led to the formation of C<sub>4</sub>H<sub>10</sub> with a minor formation of C<sub>2</sub>H<sub>6</sub>.

a) H<sub>2</sub> (20 Torr) is added onto the system on which C<sub>2</sub>H<sub>4</sub> was preadsorbed at the desired pressures.

b) H<sub>2</sub> is added onto the system on which C<sub>2</sub>H<sub>4</sub> was preadsorbed and subsequently evacuated.

c) C<sub>2</sub>H<sub>4</sub> is added onto the system on which H<sub>2</sub> was preadsorbed and subsequently evacuated.

d) The reaction products were analyzed at the difined reaction intervalues.

e) The catalytic reactions were carried out at 298 K.

On the other hand, as shown in Table 1, column 3, the addition of H<sub>2</sub> on the ZrO<sub>2</sub> catalysts on which C<sub>2</sub>H<sub>4</sub> was preadsorbed at amounts less than 6 µmol/g-cat and on which the gaseous C<sub>2</sub>H<sub>4</sub> and weak adsorption species of C<sub>2</sub>H<sub>4</sub> were evacuated at 298 K, led to the selective formation of C<sub>2</sub>H<sub>6</sub>. However, the addition of H<sub>2</sub> on the ZrO<sub>2</sub> catalyst on which C<sub>2</sub>H<sub>4</sub> was preadsorbed at pressures higher than 92.5 Torr and on which the gaseous C<sub>2</sub>H<sub>4</sub> and weak adsorption C<sub>2</sub>H<sub>4</sub> were evacuated at 298 K, led to the selective formation of C<sub>4</sub>H<sub>10</sub>. These results also indicate that gaseous C<sub>2</sub>H<sub>4</sub> plays a significant role in the formation 2-C<sub>4</sub>H<sub>8</sub> in the absence of H<sub>2</sub> in the system, as well as in the formation of C<sub>4</sub>H<sub>10</sub> in the presence of H<sub>2</sub>. Furthermore, it indicates that the formation of C<sub>4</sub>H<sub>10</sub> proceeds via the formation of 2-C<sub>4</sub>H<sub>8</sub>. In fact, the hydrogenation of 2-C<sub>4</sub>H<sub>8</sub> on the active ZrO<sub>2</sub> catalyst was found to be a very facile reaction supporting the above mechanisms.

Table 1 also indicates that a relatively strong adsorption species of C<sub>2</sub>H<sub>4</sub> selectively contributes to the formation of C<sub>2</sub>H<sub>6</sub>. Being in good agreement with results showing that the quenching of the photoluminescence is more efficient with H<sub>2</sub> than C<sub>2</sub>H<sub>4</sub>, it is clear that the adsorption of H<sub>2</sub> is much stronger than that of C<sub>2</sub>H<sub>4</sub>. Therefore, as can be seen in Table 1, column 4, the introduction of C<sub>2</sub>H<sub>4</sub> at 1.82 Torr and at 92.5 Torr onto the ZrO<sub>2</sub> catalyst on which H<sub>2</sub> was presorbed and gaseous H<sub>2</sub> was evacuated, produced only small amounts of C<sub>2</sub>H<sub>6</sub> and C<sub>4</sub>H<sub>10</sub>, respectively. These findings clearly indicate that the strong adsorption hydrogen species do not contribute to the hydrogenation reaction. It can be concluded that only weakly interacting species of hydrogen and C<sub>2</sub>H<sub>4</sub> play significant roles in the dimerization and hydrogenation reactions of C<sub>2</sub>H<sub>4</sub> on the active ZrO<sub>2</sub> catalyst.

## References

- 1) J. Kondo, K. Domen, and T. Onishi, Res. Chem. Intermedi., 19, 521 (1993).
- 2) S. C. Moon, H. Yamashita, and M. Anpo, Acid-Base Catalysis II, Sapporo, Japan, December 1993, in press.
- 3) M. Anpo, S. C. Moon, K. Chiba, G. Martra's, and S. Coluccia, Res. Chem. Intermedi., 19, 495 (1993).
- 4) I. T. Ali and I. D. Gay, J. Catal., 62, 341 (1980).
- 5) J. R. Shon and A. Ozaki, J. Catal., 59, 303 (1979).
- 6) Y. S. Khodakov, P. A. Makarov, G. Delzer, and K. M. Minachev, J. Catal., 61, 184 (1980).
- 7) Y. Amenomiya, J. H. B. Chenier, and R. J. Cvetanovic, J. Catal., 9, 28 (1967).
- 8) J. Kondo, K. Domen, K. I. Maruya, and T. Onishi, J. Chem. Soc., Faraday Trans., 86, 3021 (1990).
- 9) Furthermore, a total amount of 6  $\mu$ mol/g-cat of C<sub>2</sub>H<sub>4</sub> was coincidentally found to correspond to the total number of the LCSS on the ZrO<sub>2</sub> catalyst determined by the quantitative measurement of the PL of the catalyst.

(Received August 17, 1994)